FrontPage / SIG Discourse
Special Interest Group on Discourse (SIG Discourse) discusses research progress of our member (5-10 min. each) and interesting findings of past/state-of-the-art researches (30 min.). The schedule is listed below.
Date †
- 1st Semester: Wed 13:00-14:30
Members †
乾, 井之上, Paul, 横井, 高橋, 清野, 赤間, 白井, 栗林, 大内, 佐藤(志), 大竹, Ana
Related Keywords †
人工知能/Artificial Intelligence,物語理解/Story Understanding,プラン/Plan,修辞構造/Rhetorical Structure,照応/Anaphora,省略/Ellipsis,ゼロ照応/Zero Anaphora
Policy †
多読会と個別議論を交互にやる。
- 多読会
- 目的
- 最新論文100本を多読し、分野の方向感掴み、脳内へのポインタ作りを行う
- 多読力をつける (短い時間で研究の概形を把握する, 短い時間で疑問/感想を持つ)
- 実施要領
- 3本 x {7, 8, 9,10}人 (コアメン) = 最低20本程度の論文を多読する
- 1本3分でやる
- 目標: 100本
- 詳しくは🔒こちら
- 目的
- 個別議論
- 各回3名が担当
- 論文紹介・研究進捗報告など、自由に選んでよい
- だいたい1ヶ月に1度当番が回ってくる
- 忙しければ 自由に 延期
- 精読
- 発表前に読む論文を #random で紹介
- 30分でQA含めキッチリ切る。
- 進捗
- 30-40分でQA含め。普段の総合研究会より深めの議論をするため。
- 進捗は議論が長くなる傾向にあるので、進捗が少なくとも一個入るならば2セットで勉強会を組む
- 各回3名が担当
- 聞きかた
- 各回1度は質問・コメントをする
Schedule †
Future †
- Thu 3/7 10:30-
- 精読 or 進捗:
- 精読 or 進捗:
- 精読 or 進捗:
- Thu 2/28 10:30-
- 精読: 赤間 (2)
- 精読 or 進捗: 大内 (3)
- 精読 or 進捗: 高橋 (3)
- Thu 2/14 10:30-
- 精読: 清野 (2)
- 精読: 白井 (3) What Is One Grain of Sand in the Desert ? Analyzing Individual Neurons in Deep NLP Models, AAAI2019.
- Thu 2/7 10:30-
Done †
- Thu 1/31 10:30-
- 進捗: 大竹 (2)
- 顕現的要素の出現順序に基づく物語の類似性尺度 🔒内部資料
- 精読 or 進捗: 栗林 (2)
- 精読 or 進捗: 内藤 (2)
- 進捗: 大竹 (2)
- Thu 12/13 10:30-
- Thu 12/6 10:30-
- 精読: 佐藤 (志)
- 進捗: 大内 (2)
- 精読: 赤間 (1)
- Thu 11/29 10:30-
- 精読1: 井之上 (1)
- 精読2: 大竹
- 進捗: 白井 (1) 🔒内部資料
- Thu 11/22 10:30-
- 多読会5 (92本目〜108本目 🎉) 🔒資料
- Thu 11/15 10:30
- 多読会4 (67本目〜) 🔒資料
- Thu 10/25 10:30-
精読1: 井之上- Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, William W. Cohen. Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text. EMNLP 2018.
- paper 内部資料
- 精読2: 栗林
- Jiaqi Mu, Pramod Viswanath. All-but-the-Top: Simple and Effective Postprocessing for Word Representations. ICLR 2018.
- Mikhail Khodak, Nikunj Saunshi, Yingyu Liang, Tengyu Ma, Brandon Stewart, Sanjeev Arora. A La Carte Embedding: Cheap but Effective Induction of Semantic Feature Vectors. ACL2018.
- All-but-the-Top A La Carte 🔒内部資料
- 進捗: 内藤 🔒進捗報告
- Thu 10/18 10:30-
- 精読1: 横井
- 精読2: 高橋
- Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, Luke Zettlemoyer. QuAC : Question Answering in Context. EMNLP 2018.
- paper, 🔒annotated paper
- 進捗: 佐藤S 🔒進捗報告
- Thu 10/11 10:30-
- 多読会3 (42本目〜) 🔒資料
- Fri 10/5 14:15-
- 多読会2 (23本目〜) 🔒資料
- Wed 9/26 13:00-
続・なつやすみの... (B4)- 多読会1 (1本目〜) 🔒資料
- Wed 9/19 13:00-
- なつやすみの...
- Wed 7/25 13:00-
- B team
- 井之上 🔒内部資料
- Hannah Rashkin, Maarten Sap, Emily Allaway, Noah A. Smith, and Yejin Choi. Event2Mind: Commonsense Inference on Events, Intents, and Reactions. ACL2018. paper project home
- Wed 7/11 13:00-
- A team
- 内藤
- Wed 7/4 13:00-
- B team
- 赤間 ごめんなさい
- Wed 6/27 13:00-
- A team
- 栗林 🔒スライド 🔒Universal sentence encoder 🔒Learning General Purposeなんとか
- Wed 6/20 13:00-
- B team
- 白井 🔒esa
- Wed 6/13 13:00-
- A team
- 大内: 🔒進捗報告
- Wed 6/6 13:00-
- 清野 (1)
- Wed 5/30 13:00-
- B team
- 横井: 🔒最近の進捗と今後やりたいこと
- Wed 5/16 13:00-
- A team
- Paul: 🔒進捗報告
- Wed 5/9 13:00-
- B team
- 井之上: 🔒進捗報告
- Wed 4/25 13:00-
- A team
- Wed 4/11, 13:00-
- 研究紹介
- 井之上: 🔒キックオフ 🔒推論!
- Paul: 🔒 内部資料
- 横井: 🔒やっていた研究とやっている研究
- 高橋: 🔒研究紹介
- 清野: 🔒就活の資料を切り貼りしたもの
- 赤間: 🔒「あなたの研究内容について教えてください」
- 白井:🔒内部資料
- 栗林:🔒内部資料
- 研究紹介
Assignment †
- v: presented
- (v): assigned
前期 †
Team †
Team | Member |
A | 横井, 清野, 白井, 大内, 佐藤(志) |
B | 井之上, 高橋, 赤間, 栗林 |
Past †
- Spring 2017-Winter 2018
- Spring 2016-Winter 2017
- Spring 2015-Winter 2016
- Spring 2014-Winter 2015
- Spring 2013-Winter 2014
- Spring 2012-Winter 2013
- Spring 2011-Winter 2012
- Spring 2010-Winter 2011
Links †
Artificial Intelligence †
- Levesque, Hector J. "On our best behaviour." The 23rd International Joint Conference on Artificial Intelligence (IJCAI). August. 2013. pdf
- Rahman, Altaf, and Vincent Ng. "Resolving complex cases of definite pronouns: the winograd schema challenge." Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Association for Computational Linguistics, 2012. pdf dataset dataset 2
- Roemmele, Melissa, Cosmin Adrian Bejan, and Andrew S. Gordon. "Choice of Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning." AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning. 2011. pdf dataset
- Levesque, Hector J., Ernest Davis, and Leora Morgenstern. "The Winograd schema challenge." AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning. 2011. pdf
- Jerry R. Hobbs, Mark Stickel, Douglas Appelt, and Paul Martin. Interpretation as Abduction, Artificial Intelligence, 1993. pdf
Logical Inference †
- Mohammad Shahed Sorower, Thomas G. Dietterich, Janardhan Rao Doppa Walker Orr, Prasad Tadepalli, and Xiaoli Fern. Inverting Grice’s Maxims to Learn Rules from Natural Language Extractions. NIPS 2011. pdf
- Ekaterina Ovchinnikova, Niloofar Montazeri, Theodore Alexandrov, Jerry R. Hobbs, Michael C. McCord and Rutu Mulkar-Mehta. Abductive Reasoning with a Large Knowledge Base for Discourse Processing. IWCS 2011. pdf
- James Blythe, Jerry R. Hobbs, Pedro Domingos, Rohit J. Kate and Raymond J. Mooney. Implementing Weighted Abduction in Markov Logic. IWCS2011. pdf
- Dan Garrette, Katrin Erk, Raymond Mooney. Integrating Logical Representations with Probabilistic Information using Markov Logic. IWCS2011. pdf
- Sindhu V. Raghavan, Raymond J. Mooney. Bayesian Abductive Logic Programs. AAAI 2010. pdf
- RohitJ. Kate RaymondJ. Mooney. Probabilistic Abduction using Markov Logic Networks. IJCAI 2009 on PAIR 2009. pdf
- Jerry R. Hobbs, Mark Stickel, Douglas Appelt, and Paul Martin. Interpretation as Abduction, Artificial Intelligence, 1993. pdf
- J. Bos (2009): Applying automated deduction to natural language understanding. Journal of Applied Logic 7(1): 100–112. pdf
- A Unified Approach to Abductive Inference (ARO 2008 MURI Project@University of Washington)
Discourse Theory †
- Rhetorical Structure Theory
- Discourse Representation Theory
- J. Bos, M. Nissim (2008): Combining Discourse Representation Theory with FrameNet. In: R. Rossini Favretti (ed): Frames, Corpora, and Knowledge Representation, pp 169–183, Bononia University Press. pdf
- Dan Cristea, Nancy Ide and Laurent Romary. Veins Theory: A Model of Global Discourse Cohesion and Coherence. ACL 1998. pdf
- Barbara J. Grosz, Aravind K. Joshi and Scott Weinstein. Centering: A Framework for Modeling the Local Coherence of Discourse. Computational Linguistics, 1995. pdf
- Barbara J. Grosz and Candace L. Sidner. ATTENTION, INTENTIONS, AND THE STRUCTURE OF DISCOURSE. Computational Linguistics, 1986. pdf
- Bonnie Webber. Accounting for Discourse Relations: Constituency and Dependency. Intelligent Linguistic Architectures, 2006. pdf
- Florian Wolf, Edward Gibson. Representing Discourse Coherence: A Corpus-Based Study. Computational Linguistics, 2005.
- Bonnie Webber, Matthew Stone, Aravind Joshi and Alistair Knott. Anaphora and Discourse Structure. Computational Linguistics, 2003. pdf
- Daniel Marcu. A Formal and Computational Synthesis of Grosz and Sidner's and Mann and Thompson's theories. 1999. pdf
- Erhard Hinrichs. Discourse Annotation of Corpora. pdf
- Johanna D. Moore and Martha E. Pollack. A Problem for RST: The Need for Multi-Level Discourse Analysis. Computational Linguistics, 1992. pdf
Discourse Parsing †
- Alexis Palmer, Afra Alishahi and Caroline Sporleder. Robust Semantic Analysis for Unseen Data in FrameNet. RANLP2011. pdf
- Michaela Regneri, Alexander Koller, Josef Ruppenhofer and Manfred Pinkal. Learning Script Participants from Unlabeled Data. RANLP2011. pdf
- Manfred Klenner and Don Tuggener. An Incremental Entity-Mention Model for Coreference Resolution with Restrictive Antecedent Accessibility. RANLP2011. pdf
- Ziheng Lin, Hwee Tou Ng and Min-Yen Kan. Automatically Evaluating Text Coherence Using Discourse Relation. ACL 2011. pdf
- Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. A PDTB-Styled End-to-End Discourse Parser. 2010. pdf
- Annie Louis, Rashmi Prasad, Aravind Joshi and Ani Nenkova. Using Entity Features to Classify Implicit Discourse Relations. SIGDIAL 2010. pdf
- Aria Haghighi and Dan Klein. Coreference Resolution in a Modular, Entity-Centered Model. NAACL-HLT 2010. pdf
- Emily Pitler, Annie Louis and Ani Nenkova. Automatic sense prediction for implicit discourse relations in text. ACL-IJCNLP 2009. pdf
- Rajen Subba and Barbara Di Eugenio. An effective Discourse Parser that uses Rich Linguistic Information. NAACL-HLT 2009. pdf
- Ravikiran Vadlapudi, Poornima Malepati and Suman Yelati. Hierarchical Discourse Parsing Based on Similarity Metrics. RANLP 2009. pdf
- Manfred Klenner, Étienne Ailloud. Optimization in Coreference Resolution is not Needed: A Nearly-Optimal Algorithm with Intensional Constraints. EACL 2009. pdf
- Jason Baldridge and Alex Lascarides. Probabilistic Head-Driven Parsing for Discourse Structure. CoNLL 2005. pdf
- Daniel Marcu and Abdessamad Echihabi. An Unsupervised Approach to Recognizing Discourse Relations. ACL 2002. pdf
Plan Recognition †
- Parag Singla and Raymond J. Mooney. Abductive Markov Logic for Plan Recognition. AAAI2011. pp 1069-1075. pdf
- Nate Blaylock and James Allen. Hierarchical Instantiated Goal Recognition. MOO2006. pdf
- Nate Blaylock and James Allen. Fast Hierarchical Goal Schema Recognition. AAAI2006. pdf
- Douglas E. Appelt and Martha E. Pollack. Weighted Abduction for Plan Ascription. Technical Note 491, SRI International, 1992. pdf
- Sandra Carberry. Techniques for Plan Recognition. User Modeling and User-Adapted Interaction, 11(1-2), pp. 31-48, 2001. pdf
Corpus †
- Penn Discourse Treebank
- RST Discourse Treebank
- Discourse Graphbank: paper LDC
- SDRT annotations of dialogues: DISCOR project
Knowledge Acquisition †
- Doo Soon Kim and Bruce Poter. Integrating declarative knowledge : Issues, Algorithms and Future Work. AAAI2008. pdf
- Jonathan Berant, Tel Aviv and Jacob Goldberger. Global Learning of Typed Entailment Rules. ACL2011. (to appear) pdf
- Stefan Schoenmackers, Jesse Davis, Oren Etzioni and Daniel Weld. Learning First-Order Horn Clauses from Web Text. EMNLP2010. pdf
- Nathanael Chambers and Dan Jurafsky. Unsupervised Learning of Narrative Schemas and their Participants. ACL2010. pdf
Lectures †
- University of Southern California: Introduction to NLP, Empirical Methods in Natural Language Processing
- MIT: Computational Models of Discourse
- Tohoku University: http://www.is.tohoku.ac.jp/_eng/introduction/laboratories/sis/iis_cs.html
- Story Understanding Resources
- David Poole and Alan Mackworth. Artificial Intelligence: Foundations of Computational Agents
Tools †
Misc. †
© Inui Laboratory 2010-2018 All rights reserved.