FrontPage / Learning Deep Learning

Deep Learning 勉強会/概要

教材を輪読することで、深層学習の基礎や自然言語処理への応用を学びます。

2017

Date
3月30日~ 木曜日 10:00~12:00, 5月11日~ 火曜日 16:20~17:50
Members
松林,松田,横井,栗原,高橋,鶴田,清野,塙

内容

  • 読む本:Deep Learning, Book in preparation for MIT Press- Yoshua Bengio and Ian J. Goodfellow and Aaron Courville URL
  • 🔒esaページ

日程・担当

1 Introduction

  • 個々人が頑張って読む

2 Linear Algebra

3 Probability and Information Theory

4 Numerical Computation

5 Machine Learning Basics

  • 5/26
    • 清野 5.5, 5.7: 🔒esa
  • 6/03
    • 清野 5.5, 5.7: 🔒esa
  • 6/10
    • 塙 5.1, 5.2: 🔒esa
  • 6/17
    • 塙 5.3, 5.4: 🔒esa
  • 7/18
  • 8/1
    • 横井 5.8 (+ 2.12): 🔒esa, 🔒esa
  • 9/19
  • 9/26
    • 松田 5.11: 🔒esa

6 Feedforward Deep Networks

7 Regularization

8 Optimization for Training Deep Model

9 Convolutional Networks

10 Sequence Modeling: Recurrent and Recursive Nets

11 Practical Methodology

12 Applications

13 Structured Probabilistic Models for Deep Learning

14 Monte Carlo Methods

15 Linear Factor Models and Auto-Encoders

16 Representation Learning

17 The Manifold Perspective on Representation Learning

18 Confronting the Partition Function

19 Approximate Inference

20 Deep Generative Models

過去の記録


© Inui Laboratory 2010-2018 All rights reserved.